Popular Number Theory Books

15+ [Hand Picked] Popular Books On Number Theory

Discover the list of some best books written on Number Theory by popular award winning authors. These book on topic Number Theory highly popular among the readers worldwide.

5/5

Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem by Simon Singh

xn + yn = zn, where n represents 3, 4, 5, ...no solution "I have discovered a truly marvelous demonstration of this proposition which this margin is too narrow to contain." With these words, the seventeenth-century French mathematician Pierre de Fermat threw down the gauntlet to future generations.  What came to be known as Fermat's Last Theorem looked simple; proving it, ho xn + yn = zn, where n represents 3, 4, 5, ...no solution "I have discovered a truly marvelous demonstration of this proposition which this margin is too narrow to contain." With these words, the seventeenth-century French mathematician Pierre de Fermat threw down the gauntlet to future generations.  What came to be known as Fermat's Last Theorem looked simple; proving it, however, became the Holy Grail of mathematics, baffling its finest minds for more than 350 years.  In Fermat's Enigma--based on the author's award-winning documentary film, which aired on PBS's "Nova"--Simon Singh tells the astonishingly entertaining story of the pursuit of that grail, and the lives that were devoted to, sacrificed for, and saved by it.  Here is a mesmerizing tale of heartbreak and mastery that will forever change your feelings about mathematics.

I WANT TO READ THIS
4/5

Introduction to Analytic Number Theory by Tom M. Apostol

"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succee "This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."---MATHEMATICAL REVIEWS

I WANT TO READ THIS
4/5

A Classical Introduction to Modern Number Theory (Graduate Texts in Mathematics) by Kenneth Ireland , Michael Rosen

This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an ov This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.

I WANT TO READ THIS
3.5/5

An Introduction to the Theory of Numbers by G.H. Hardy

The fifth edition of this classic reference work has been updated to give a reasonably accurate account of the present state of knowledge.

I WANT TO READ THIS
3.1/5

Prime Numbers and the Riemann Hypothesis by Barry Mazur , William Stein

Prime numbers are beautiful, mysterious, and beguiling mathematical objects. The mathematician Bernhard Riemann made a celebrated conjecture about primes in 1859, the so-called Riemann Hypothesis, which remains to be one of the most important unsolved problems in mathematics. Through the deep insights of the authors, this book introduces primes and explains the Riemann Hyp Prime numbers are beautiful, mysterious, and beguiling mathematical objects. The mathematician Bernhard Riemann made a celebrated conjecture about primes in 1859, the so-called Riemann Hypothesis, which remains to be one of the most important unsolved problems in mathematics. Through the deep insights of the authors, this book introduces primes and explains the Riemann Hypothesis. Students with minimal mathematical background and scholars alike will enjoy this comprehensive discussion of primes. The first part of the book will inspire the curiosity of a general reader with an accessible explanation of the key ideas. The exposition of these ideas is generously illuminated by computational graphics that exhibit the key concepts and phenomena in enticing detail. Readers with more mathematical experience will then go deeper into the structure of primes and see how the Riemann Hypothesis relates to Fourier analysis using the vocabulary of spectra. Readers with a strong mathematical background will be able to connect these ideas to historical formulations of the Riemann Hypothesis.

I WANT TO READ THIS
3.2/5

Elementary Number Theory by David M. Burton

Written for the one-semester undergraduate number theory course, this text provides a simple account of classical number theory, set against a historical background that shows the subject's evolution from antiquity. It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.

I WANT TO READ THIS
3.9/5

The Little Book of Bigger Primes by Paulo Ribenboim

A deep understanding of prime numbers is one of the great challenges in mathematics. In this new edition, fundamental theorems, challenging open problems, and the most recent computational records are presented in a language without secrets. The impressive wealth of material and references will make this book a favorite companion and a source of inspiration to all readers. A deep understanding of prime numbers is one of the great challenges in mathematics. In this new edition, fundamental theorems, challenging open problems, and the most recent computational records are presented in a language without secrets. The impressive wealth of material and references will make this book a favorite companion and a source of inspiration to all readers. Paulo Ribenboim is Professor Emeritus at Queen's University in Canada, Fellow of the Royal Society of Canada, and recipient of the George Polya Award of the Mathematical Association of America. He is the author of 13 books and more than 150 research articles. From the reviews of the First Edition: Number Theory and mathematics as a whole will benefit from having such an accessible book exposing advanced material. There is no question that this book will succeed in exciting many new people to the beauty and fascination of prime numbers, and will probably bring more young people to research in these areas. (Andrew Granville, Zentralblatt)

I WANT TO READ THIS
4.7/5

An Introduction to the Theory of Numbers by Ivan Niven , Herbert S. Zuckerman

The Fifth Edition of one of the standard works on number theory, written by internationally-recognized mathematicians. Chapters are relatively self-contained for greater flexibility. New features include expanded treatment of the binomial theorem, techniques of numerical calculation and a section on public key cryptography. Contains an outstanding set of problems.

I WANT TO READ THIS
3.9/5

Elementary Number Theory and Its Applications by Kenneth H. Rosen

The fourth edition of Kenneth Rosen's widely used and successful text, Elementary Number Theory and Its Applications, preserves the strengths of the previous editions, while enhancing the book's flexibility and depth of content coverage.The blending of classical theory with modern applications is a hallmark feature of the text. The Fourth Edition builds on this strength wi The fourth edition of Kenneth Rosen's widely used and successful text, Elementary Number Theory and Its Applications, preserves the strengths of the previous editions, while enhancing the book's flexibility and depth of content coverage.The blending of classical theory with modern applications is a hallmark feature of the text. The Fourth Edition builds on this strength with new examples, additional applications and increased cryptology coverage. Up-to-date information on the latest discoveries is included.Elementary Number Theory and Its Applications provides a diverse group of exercises, including basic exercises designed to help students develop skills, challenging exercises and computer projects. In addition to years of use and professor feedback, the fourth edition of this text has been thoroughly accuracy checked to ensure the quality of the mathematical content and the exercises.

I WANT TO READ THIS
5/5

Riemann's Zeta Function by Harold M. Edwards

Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.

I WANT TO READ THIS
3.6/5

Prime Numbers: A Computational Perspective by Richard Crandall , Carl Pomerance

Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field

I WANT TO READ THIS
4.8/5

A Pathway Into Number Theory by R.P. Burn

A sequence of exercises which will lead readers from quite simple number work to the point where they can prove algebraically the classical results of elementary number theory for themselves.

I WANT TO READ THIS
3.9/5

A Course in Number Theory and Cryptography by Neal Koblitz , Ann Hibner Koblitz

The purpose of this book is to introduce the reader to arithmetic topics, both ancient and modern, that have been at the center of interest in applications of number theory, particularly in cryptography. No background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, e The purpose of this book is to introduce the reader to arithmetic topics, both ancient and modern, that have been at the center of interest in applications of number theory, particularly in cryptography. No background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasizing estimates of the efficiency of the techniques that arise from the theory. A special feature is the inclusion of recent application of the theory of elliptic curves. Extensive exercises and careful answers have been included in all of the chapters. Because number theory and cryptography are fast-moving fields, this new edition contains substantial revisions and updated references.

I WANT TO READ THIS
3.3/5

Elements Of Number Theory (Undergraduate Texts In Mathematics) by John Stillwell

This book is intended to complement my Elements oi Algebra, and it is similarly motivated by the problem of solving polynomial equations. However, it is independent of the algebra book, and probably easier. In Elements oi Algebra we sought solution by radicals, and this led to the concepts of fields and groups and their fusion in the celebrated theory of Galois. In the pre This book is intended to complement my Elements oi Algebra, and it is similarly motivated by the problem of solving polynomial equations. However, it is independent of the algebra book, and probably easier. In Elements oi Algebra we sought solution by radicals, and this led to the concepts of fields and groups and their fusion in the celebrated theory of Galois. In the present book we seek integer solutions, and this leads to the concepts of rings and ideals which merge in the equally celebrated theory of ideals due to Kummer and Dedekind. Solving equations in integers is the central problem of number theory, so this book is truly a number theory book, with most of the results found in standard number theory courses. However, numbers are best understood through their algebraic structure, and the necessary algebraic concepts- rings and ideals-have no better motivation than number theory. The first nontrivial examples of rings appear in the number theory of Euler and Gauss. The concept of ideal-today as routine in ring the- ory as the concept of normal subgroup is in group theory-also emerged from number theory, and in quite heroic fashion. Faced with failure of unique prime factorization in the arithmetic of certain generalized "inte- gers," Kummer created in the 1840s a new kind of number to overcome the difficulty. He called them "ideal numbers" because he did not know exactly what they were, though he knew how they behaved.

I WANT TO READ THIS
3.9/5

A Computational Introduction to Number Theory and Algebra by Victor Shoup

Number theory and algebra play an increasingly significant role in computing and communications, as evidenced by the striking applications of these subjects to such fields as cryptography and coding theory. This introductory book emphasises algorithms and applications, such as cryptography and error correcting codes, and is accessible to a broad audience. The mathematical Number theory and algebra play an increasingly significant role in computing and communications, as evidenced by the striking applications of these subjects to such fields as cryptography and coding theory. This introductory book emphasises algorithms and applications, such as cryptography and error correcting codes, and is accessible to a broad audience. The mathematical prerequisites are minimal: nothing beyond material in a typical undergraduate course in calculus is presumed, other than some experience in doing proofs - everything else is developed from scratch. Thus the book can serve several purposes. It can be used as a reference and for self-study by readers who want to learn the mathematical foundations of modern cryptography. It is also ideal as a textbook for introductory courses in number theory and algebra, especially those geared towards computer science students.

I WANT TO READ THIS